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AN A P P R O X I M A T I O N  OF T H E  F O R M  OF A C O M P R E S S E D  F L E X I B L E  ROD 

N. S. As tapov  UDC 539.3 

A compact algorithm is proposed for exact calculation of the coordinates of the plane elastic 
line of an axially compressed flexible rod under any loads. Refined approximate formulas are 
obtained for calculation of the coordinates of the elastic line with an error not greater than 1% 
of the rod length even for loads which exceed the critical Euler load by 30%. 

The postcritical forms of equilibrium of compressed flexible rods were investigated for the first time 
by Lagrange and studied in detail with the use of the tables of elliptic integrals by Krylov [1] and Popov [2]. 
However, the methods given in [1, 2] are laborious for practice because of the need to calculate the quantities 
expressed in elliptic integrals of the first and second kinds. 

F o r m u l a t i o n  of  t h e  P r o b l e m .  Exac t  Solut ion.  We consider a flexible, elastic, simply supported 
rod which is compressed by the axial force P whose magnitude and direction do not change during deformation 
of the rod. We assume that the length L of the axial line of the rod remains unchanged and the bending of 
the line occurs only in the (x, y) plane. We analyze the stable form of equilibrium of the rod under the load 
P > P. = EI(~r/L) 2 (EI  is the flexural rigidity of the rod), i.e., under a load that exceeds the first Euler 
critical load [1-4]. 

We introduce the notation for the incomplete and complete elliptic integrals of the first and second 
kinds: 

F ( ~ ) =  , F = F  ~" E(~0)= 1 - k  2sin 2r E =  ~/ ' . 

0 1 - k 2 sin 2 ~o 0 

Let ~ = P / P .  be the dimensionless load parameter (the compressive load normalized to the Euler 
critical load), a and f = a/L be the maximum dimensional and dimensionless deflections of the rod, t = s / L  
be the distance from the end of the rod to the point at the axis divided by the length of the rod, and x(t) and 
y(t) be the desired dimensionless Cartesian coordinates (normalized to the length L) of the point t (0 ~< t ~< 1). 
To calculate with any accuracy the coordinates of the point which lies on the axis of the rod bent by the axial 
load ~ at the distance s (0 ~< s <~ L) from its end (the distance is measured along the axis), the following 
algorithm [1-4] is proposed: 

Step 1. For a given load A/> 1, calculate the parameter k (0 ~< k < 1) from the equation 

F = 1rye/2. 

The parameter k is geometrically interpreted as the sine of the half-angle between the tangent to the axis of 
the bent rod at its end and the initially rectilinear axis of the rod. For example, k = 0 corresponds to )~ = 1 
a n d k - - + l  a s A - - s .  

Step 2. Calculate the maximum deflection which occurs for t = 1/2, i.e., in the middle of the rod: 
f - 2k/(~rv~). 
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Step 3. For a given value of t = s/L,  find the ampli tude ~2 ( -7r /2  ~< ~o ~< ~r/2) of the elliptic integral 
from the equation 

F (~)  = (1/2 - t)TrV~. 

Step 4. Calculate the coordinate y(t) = f cos ~o. 
Step 5. Calculate the coordinate x(t) = 2(E - E(~o))/(~ryrA) - t. 
We note that  only the complete elliptic integral of the first kind is used to calculate the maximum 

deflection f (steps 1 and 2). Many approximate formulas for calculation of the maximum deflection are 
available, the most exact of which 

/ = 2 - 2 (:) 

is given in [5]. However, to calculate the coordinate y(t) in the general case, it is necessary to solve an equation 
(step 3), in which the desired ~o is the limit of a~ incomplete elliptic integral of the first kind. Moreover, to 
calculate the coordinate x(t) ,  the values of elliptic integrals of the second kind are required (step 5). 

A p p r o x i m a t e  F o r m u l a s .  There axe very few approximate formulas for calculation of the coordinates 
x(t) and y(t). One of the  known formulas is 

y(t) = ( 2 V ~ / r ) V ~  - : sin ~-t (2) 

(see [6]) which is the particular case of the formula y(t) = csin~rt + c: sin3~'t given therein with a wrong 
(CCl/> 0) value of the coefficient c:. The formula obtained by the per turbat ion method  

y(t) = a sin l r t -  (~'2]64)a3 sin 3a-t (3) 

is more exact [7, 8]. Here a is found from the relation f2 = a2(1 + (aTr)2/32) in terms of f or directly in terms 
of )~ using (1). The exact solution and the results of calculations using formulas (2) and (3), the equation 

y(t) = a sin lrt, 

which is the truncation of (3), and the equation 

y(t) = f s i n  ~rt 

(4) 

(5) 
are given in Table 1 for A ~ 1.2939 (k = sin40 ~ and various t. For A ~ 1, one can obtain from (5) the formula 
y(t) = (2v/2/(rA))v/~ - 1 sin r t ,  which is more exact than (2) but less exact than formulas (3)-(5); therefore, 
the corresponding calculation results are not given in Table 1. Since, for a parametrically specified curve, we 
h ave  

t t 
1 1 

0 0 

for ly'(t)l < :, using (5), one can approximately represent the coordinate x(t)  in the form 

[1 (f~r)2 3(f~')4 5(/7r)6 " 4 
4 64 ~ ' 6  ]' +32~r(f~r)2 (fTr)2 sin 27ft. (6) x ( t )  [ 

The  calculation results for the coordinate x(t)  by formula (6), which provides the best accuracy 
compared to the other formulas tested, are given in Table 1. 

C o m p a r i s o n  of  t h e  Fo rmu la s .  C o n c l u s i o n s .  An analysis of the approximate formulas for 
determination of the form of the bent elastic rod shows that  formulas (3) and (6) provide the best accuracy 
in calculating the coordinates y(t) and x(t) for a specified t. For loads of up to A = 1.3, the calculation errors 
for y(t) and x(t) are less than 1 and 0.3%, respectively, relative to the length of the rod L (see Table 1). 
Formulas (3)-(5) are significantly more exact than formula (2). Calculation of the coordinate y(t) by formula 
(2) gives an error which attains 13% for the loads considered. 

For ~ ~ 1.2939, Fig. 1 shows the forms of the elastic curves constructed by the exact formulas of steps 
1-5 (curve 1), approximate formulas (2) and (6) (curve 2), and formulas (5) and (6) (curve 3). Curve 3 lies 
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TABLE 1 

Coordinates x(t) and y(t) of the Rod for A = 1.2939 

Coordinate 

y(t) 

x(t) 

Formula 
0.1 

(2) 0.1508 

(3) 0.1036 

(4) 0.1091 

(5) 0.1111 

Exact solution 

(6) 
Exact solution 

0.0981 

0.0170 

0.0194 

0.2 

0.287 

0.201 

0.207 

0.211 

0.193 

0.049 

t 

0.3 

0.395 

0.283 

0.286 

0.291 

0.277 

0.105 

0.4 

0.464 

0.340 

0.334 

0.342 

0.337 

0.186 

0.5 

0.488 

0.360 

0.353 

0.360 

0.360 

0.282 

0.280 

~ 2 

-0.2 0 0.2 0.4 x(t) 

Fig. 1 

above curve 1 everywhere. In the calculation of the coordinate x(t) for curve 2, the value of f in formula (6) 
was set equal to the maximum of the function (2), i.e., it was assumed that  f = 2x/ '~ - 2/~r. If formulas 
(3) and (6) are used to determine the elastic line, the corresponding curve lies between curves 1 and 3, i.e., 
it is closer to the exact curve 1 than curve 3. However, bearing in mind that  formulas (3) and (4) are more 
complex compared with formula (5) and the refinement of the results is insignificant, the use of formula (5) 
is advantageous. 

Formulas (1), (5), and (6) are expedient in preliminary calculations in more complicated problems 
where rods are the elements of a structure. These formulas can be useful in instrument making, in particular, 
for calculating mechanical regulators. 
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